
© 2022 FuzzingLabs - BeaconFuzz - OffensiveCon 2022

BeaconFuzz
A Journey into Ethereum 2.0 Blockchain Fuzzing and

Vulnerability Discovery

1

© 2022 FuzzingLabs - BeaconFuzz - OffensiveCon 2022

Whoami
Patrick Ventuzelo / @Pat_Ventuzelo

● Twitter / LinkedIn / Github / Blog / Youtube

Founder of FuzzingLabs | Senior Security Researcher
⇒ Training/Consulting

Previously:
● QuoScient GmbH
● P1 Security
● French DoD
● Airbus Defense & Space

⇒ Fuzzing, Vulnerability research
⇒ Rust, Golang, WebAssembly, Browsers
⇒ Blockchain Security, Smart contracts

2

https://twitter.com/Pat_Ventuzelo
https://www.linkedin.com/in/patrick-ventuzelo/
https://github.com/pventuzelo
https://fuzzinglabs.com/security-blog/
https://www.youtube.com/channel/UCGD1Qt2jgnFRjrfAITGdNfQ

© 2022 FuzzingLabs - BeaconFuzz - OffensiveCon 2022

Ethereum 2.0 Blockchain

3

© 2022 FuzzingLabs - BeaconFuzz - OffensiveCon 2022

What's Ethereum & Ethereum 2.0 ?
● What's Ethereum?

○ The first blockchain running Smart Contracts
■ Created in 2015

○ Networking: Peer-to-peer (P2P)
■ Decentralized platform

○ Smart contracts
■ Mostly written in Solidity
■ Compiled in EVM bytecode

○ Consensus: Proof Of Work (PoW)
■ Miners compete to append blocks and mint new currency
■ Energy consumption is huge

● Ethereum 2.0 (new naming: Ethereum Consensus)
○ Upgrade of Ethereum
○ New consensus: Proof of Stake (PoS)

■ Selecting validators in proportion to their quantity of tokens holdings
■ Validators are replacing miners

○ Not a new blockchain but an evolution

4

https://blog.ethereum.org/2022/01/24/the-great-eth2-renaming/

© 2022 FuzzingLabs - BeaconFuzz - OffensiveCon 2022

Ethereum 2.0 Roadmap

5

© 2022 FuzzingLabs - BeaconFuzz - OffensiveCon 2022

What's Ethereum 2.0 Beacon chain?
● Specification

○ Ethereum PoS Consensus
■ Written in Python
■ With documentation + unit tests

○ Followed by all ETH2.0 clients
○ Divided into Phase & features

■ Researched and developed in parallel
○ Released over time

■ Dec 2021 - Phase 0
■ Q4 2021 - Altair
■ Q2 2022 - Bellatrix (aka The Merge)
■ 2022/2023 -Sharding

● Phase 0 - Beacon chain
○ The Core of Ethereum proof-of-stake
○ Stores and manages the registry of validators
○ Beacon Chain specification - link

6

https://github.com/ethereum/consensus-spec-tests
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md

© 2022 FuzzingLabs - BeaconFuzz - OffensiveCon 2022

ETH2.0 Client - Architecture & Attack Surface
● 2 Separate binaries

○ Validator client
○ Beacon node

● Networking stack (libp2p & devp2p)
○ ENR: Ethereum Node Records
○ Discv5: Discovery Protocol v5
○ Gossipsub, etc.

● State transition logic
○ Simple Serialize (SSZ) objects

■ Decoding/encoding
○ Beacon Block & other Datatype processing

● Which kind of bugs are interesting?
○ Crashes/Panics
○ Memory corruption, Denial Of Service (DoS)
○ Consensus/Logic bugs

7

https://github.com/libp2p
https://github.com/ethereum/devp2p
https://github.com/ethereum/devp2p/blob/master/enr.md
https://github.com/ethereum/devp2p/blob/master/discv5/discv5.md
https://github.com/libp2p/specs/tree/master/pubsub/gossipsub
https://github.com/ethereum/consensus-specs/blob/dev/ssz/simple-serialize.md

© 2022 FuzzingLabs - BeaconFuzz - OffensiveCon 2022

ETH2.0 Client - Consensus clients overview
● Lighthouse

○ Developed by Sigma Prime
○ Written in Rust

● Prysm
○ Developed by Prysmatic Labs
○ Written in Go

● Nimbus
○ Developed by Status
○ Written in Nim

● Teku
○ Developed by ConsenSys
○ Written in Java

● Lodestar
○ Developed by ChainSafe
○ Written in TypeScript/JavaScript

8

Prysm

Nimbus

Teku

Lighthouse

Lodestar

https://github.com/sigp/lighthouse
https://github.com/prysmaticlabs/prysm
https://github.com/status-im/nimbus-eth2
https://github.com/ConsenSys/teku
https://github.com/ChainSafe/lodestar

© 2022 FuzzingLabs - BeaconFuzz - OffensiveCon 2022

Beacon Fuzz Roadmap

9

© 2022 FuzzingLabs - BeaconFuzz - OffensiveCon 2022

Beacon Fuzz History
● May 2019 - Guidoʼs eth2 fuzzing

○ The Ethereum Foundation engaged Guido Vranken to build differential fuzzing across existing Ethereum 2.0 clients.
○ eth2.0-fuzzing (written in C++) leverages libFuzzer to provide the same fuzzing input on all targets.

■ focussed on fuzzing ZRNT and Pyspec, the Go and Python executable Ethereum 2.0 specification.

● September 2019 - Resumption by Sigma Prime
○ Sigma Prime received a grant from the Ethereum foundation to continue the project.
○ Maintainability of the differential fuzzing platform.

■ Upgrading the fuzzing targets to match the latest version of the Ethereum 2.0 specification.
■ Support more clients and create a set of valid inputs (corpora) to be used by the differential fuzzer.

● March/April 2020 - Start of Beacon Fuzz project
○ Fuzzinglabs & Sigma Prime start working together.
○ Exploring other options to achieve the same goals.

■ Improve the coverage & find new bugs.

⇒ This talk represents in part the work done periodically over the past 1-2 years

10

https://github.com/guidovranken/
https://github.com/guidovranken/eth2.0-fuzzing
https://github.com/sigp/beacon-fuzz

© 2022 FuzzingLabs - BeaconFuzz - OffensiveCon 2022

Beacon Fuzz Roadmap

11

● Understand the context
○ Learn more about Ethereum 2.0 PoS
○ Compiling & testing all projects

● Create a testing/fuzzing corpora
○ using the eth2 specification
○ using all clients unit tests

● Create multiple fuzzing tools
○ Coverage-guided fuzzer (eth2fuzz)
○ Simple differential fuzzer (eth2diff)
○ Structural fuzzing implementation
○ Differential fuzzer (beacon-fuzz-2)

● Integrate new clients/targets
○ Start with the more up-to-date clients
○ Simplify the compilation with docker

© 2022 FuzzingLabs - BeaconFuzz - OffensiveCon 2022

Beacon Fuzz Roadmap - Design & Choices
● Why rewrite everything in Rust?

○ Ease of development & maintainability
○ Better tooling & ecosystem
○ Foreign Function Interfaces (FFI) bindings
○ Structural fuzzing is easier with Arbitrary trait
○ (also I REALLY donʼt like C/C++)

● Why create multiple fuzzing tools?
○ They are not all targeting the same code
○ Some of them will be faster to keep up-to-date
○ They do not require the same computer power for compilation & fuzzing
○ They do not always follow the same specification version & clients branches

● Why not directly use the most evolved/efficient fuzzing techniques?
○ Simple fuzzer will catch faster potentially blocking low hanging-fruits
○ Itʼs better to increase the development complexity over time

■ to prevent being overcharged by difficulty
■ to adapt to new information or clients updates

12

© 2022 FuzzingLabs - BeaconFuzz - OffensiveCon 2022

eth2fuzz - Coverage-guided fuzzing

13

© 2022 FuzzingLabs - BeaconFuzz - OffensiveCon 2022

eth2fuzz - Coverage-guided fuzzing on all clients

14

© 2022 FuzzingLabs - BeaconFuzz - OffensiveCon 2022

eth2fuzz - Lighthouse coverage-guided fuzzing
● Lighthouse - Rust Ethereum 2.0 Client

○ Maintained by Sigma Prime
○ Written in Rust

● Rust fuzzers
○ hfuzz-rs: Fuzz your Rust code with Google-developed Honggfuzz
○ cargofuzz: A cargo subcommand for fuzzing with libFuzzer
○ afl-rs: Fuzzing Rust code with AFLplusplus

● Complexity: Low/Medium
○ Generation of an SSZ binary
○ Decoding of the SSZ into a valid structure
○ Loading randomly one valid Beacon State
○ Processing of the state transition

15

https://github.com/sigp/lighthouse
https://github.com/rust-fuzz/honggfuzz-rs
https://github.com/rust-fuzz/cargo-fuzz
https://github.com/rust-fuzz/afl.rs

© 2022 FuzzingLabs - BeaconFuzz - OffensiveCon 2022

eth2fuzz - Lighthouse results
● 3 Bugs found

○ Memory allocation failure in SSZ decoding due to OOB of variable-length types - link
■ Vec::with_capacity called with an unchecked size argument

○ Panic when decoding non-utf8 string as an ENR - link
○ Panic due to multiplication overflow when getting the Beacon proposer index of BeaconState - link

■ When Rust code is compiled in debug mode, overflows are checked and triggered panics.
■ Beacon State was considered as a trusted container

● leads to clarification and update regarding the overflow assumptions of the eth2 specification - link

● Limitation: None
● Possible improvement

○ Structural fuzzing using Arbitrary trait
○ Add more fuzzing harnesses

■ Increase code coverage

16

https://github.com/sigp/lighthouse/pull/974
https://github.com/AgeManning/enr/pull/12
https://github.com/sigp/lighthouse/pull/1009
https://github.com/ethereum/eth2.0-specs/issues/1701

© 2022 FuzzingLabs - BeaconFuzz - OffensiveCon 2022

eth2fuzz - Prysm dumb fuzzing

17

● Prysm - Go implementation of Ethereum proof of stake
○ Maintained by Prysmatic Labs
○ Written in Go

● Interesting utility/testing tools
○ pcli state-transition: Subcommand to run manual state transitions

● Complexity: None
○ Basic shell script
○ Replay inputs generated during lighthouse fuzzing

● Bugs found: None

https://github.com/prysmaticlabs/prysm
https://prysmaticlabs.com/
https://pkg.go.dev/github.com/prysmaticlabs/prysm/v2/tools/pcli#section-readme

© 2022 FuzzingLabs - BeaconFuzz - OffensiveCon 2022

● Go fuzzers
○ go-fuzz: Randomized testing for Go
○ libfuzzer: Generate an archive file

■ that can be used with libFuzzer

● Complexity: Medium
○ We canʼt use classical usage of go-fuzz for Prysm

■ Herumi's cgo-based BLS implementation
■ go-fuzz doesn't support cgo - link

○ They were using Bazel for building
■ Bazel is painful if youʼre not trained

○ We asked for native go build integration
■ i.e. make Prysm “go gettable”
■ “biggest feature of the year”

● For Prysm external contributor

eth2fuzz - Prysm coverage-guided fuzzing

18

https://github.com/dvyukov/go-fuzz
https://github.com/dvyukov/go-fuzz#libfuzzer-support
https://github.com/dvyukov/go-fuzz/issues/101
https://twitter.com/rauljordaneth/status/1267100659259670528?s=20

© 2022 FuzzingLabs - BeaconFuzz - OffensiveCon 2022

eth2fuzz - Prysm results
● 3 Bugs found

○ Slice bounds out of range when parsing SSZ - link
○ Nil pointer dereference when processing ProposerSlashing - link
○ Slice bounds out of range when parsing SSZ #2 - link

● Limitation: None
● Possible improvement

○ Structural fuzzing using gofuzz

19

https://github.com/prysmaticlabs/prysm/issues/6083
https://github.com/prysmaticlabs/prysm/issues/6127
https://github.com/prysmaticlabs/prysm/issues/6083#issuecomment-690008952
https://github.com/google/gofuzz

© 2022 FuzzingLabs - BeaconFuzz - OffensiveCon 2022

eth2fuzz - Nimbus dumb fuzzing
● Nimbus - Nim implementation of the Ethereum 2.0 blockchain

○ Maintained by Status
○ Written in Nim

● Interesting utility/testing tools
○ ncli_pretty: Pretty-print SSZ object as JSON
○ ncli_transition: Perform state transition

■ given a pre-state and a block to apply
○ ncli_hash_tree_root: Print tree root of an SSZ object

● Complexity: None
○ Basic shell script
○ Replay inputs generated during lighthouse fuzzing

● 5 Bugs found
○ Segmentation fault during State transition - link
○ AssertionError during State transition - link
○ IndexError during Attestation SSZ parsing - link
○ IndexError during Beaconstate SSZ parsing - link
○ IndexError during Beaconstate SSZ parsing #2 - link

20

https://github.com/status-im/nimbus-eth2
https://status.im/
https://github.com/status-im/nimbus-eth2/blob/3cd14c44e678e31f81a0a4a0c9d6194010671530/ncli/ncli_pretty.nim
https://github.com/status-im/nimbus-eth2/blob/3cd14c44e678e31f81a0a4a0c9d6194010671530/ncli/ncli_transition.nim
https://github.com/status-im/nimbus-eth2/blob/3cd14c44e678e31f81a0a4a0c9d6194010671530/ncli/ncli_hash_tree_root.nim
https://github.com/status-im/nimbus-eth2/issues/921
https://github.com/status-im/nimbus-eth2/issues/922
https://github.com/status-im/nimbus-eth2/issues/931
https://github.com/status-im/nimbus-eth2/issues/896
https://github.com/status-im/nimbus-eth2/issues/920

© 2022 FuzzingLabs - BeaconFuzz - OffensiveCon 2022

eth2fuzz - Nimbus coverage-guided fuzzing
● Nim Programming Language

○ Syntax similar to Python
○ Compiled language, with strong static typing.
○ Nim compilation process

■ Nim code converted to C
■ C compilation to binary

● Nim fuzzers
○ afl/afl++: template for afl/afl++ abstraction
○ Libfuzzer: template for libfuzzer abstraction
○ Honggfuzz: template for honggfuzz abstraction

● Complexity: Medium
○ New language to explore
○ All fuzzers abstraction was not developed at the time

■ But part of Nimbus team are also Nim language core developers

21

https://github.com/status-im/nim-testutils/tree/master/testutils/fuzzing#manually-with-afl
https://github.com/status-im/nim-testutils/tree/master/testutils/fuzzing#manually-with-libfuzzer
https://github.com/status-im/nim-testutils/blob/master/testutils/fuzzing_engines.nim#L22

© 2022 FuzzingLabs - BeaconFuzz - OffensiveCon 2022

eth2fuzz - Nimbus results
● 2 Bugs found

○ Unhandled exception IndexError when parsing ProposerSlashing - link
○ IndexError during AttesterSlashing processing - link

● Limitation: None

● Possible improvement
○ Add more fuzzing harnesses to improve coverage

22

https://github.com/status-im/nimbus-eth2/issues/1323
https://github.com/status-im/nimbus-eth2/issues/1207

© 2022 FuzzingLabs - BeaconFuzz - OffensiveCon 2022

eth2fuzz - Teku dumb fuzzing
● Teku - Java Implementation of the Ethereum 2.0 Beacon Chain

○ Maintained by ConsenSys
○ Written in Java

● Interesting utility/testing subcommands
○ teku transition: Manually run state transitions

● Complexity: None
○ Basic shell script
○ Replay inputs generated during lighthouse fuzzing

● 5 Bugs found during Block SSZ parsing
○ DoS/infinite processing - link
○ IllegalArgumentException: List out of bounds - link
○ IllegalArgumentException: Invalid negative length - link
○ IndexOutOfBoundsException: index (-1) must not be negative - link
○ java.lang.IndexOutOfBoundsException: index (0) must be less than size (0) - link

23

https://github.com/ConsenSys/teku
https://github.com/ConsenSys/teku/blob/874f9a7b874a87c7ebae66791c72bf6c45ba1af0/teku/src/main/java/tech/pegasys/teku/cli/subcommand/TransitionCommand.java
https://github.com/ConsenSys/teku/issues/1674
https://github.com/ConsenSys/teku/issues/1675
https://github.com/ConsenSys/teku/issues/1677
https://github.com/ConsenSys/teku/issues/1678
https://github.com/ConsenSys/teku/issues/1685

© 2022 FuzzingLabs - BeaconFuzz - OffensiveCon 2022

eth2fuzz - Teku coverage-guided fuzzing
● Java fuzzers

○ JQF+AFL: Fuzzing a Java program using JQF & AFL
○ Jazzer: Coverage-guided, in-process fuzzing for the JVM

■ (Not available at the time)

● Complexity: Medium
○ Java ecosystem to deal with
○ A lot of different exceptions to handle

● 1 Bug found
○ Illegal Index Array Access in Attester Slashing Processing - link

● Limitation
○ JQF+AFL was really SLOW (< 10 exec/s per thread)
○ Complex set up forcing to run the fuzzer inside docker

● Possible improvement
○ Use Jazzer as the new fuzzing framework

24

https://github.com/rohanpadhye/jqf/wiki/Fuzzing-with-AFL
https://github.com/CodeIntelligenceTesting/jazzer
https://github.com/ConsenSys/teku/issues/2345

© 2022 FuzzingLabs - BeaconFuzz - OffensiveCon 2022

eth2fuzz - Lodestar coverage-guided fuzzing
● Lodestar - Ethereum 2.0: TypeScript Implementation of the Beacon Chain

○ Maintained by ChainSafe Systems
○ Written in TypeScript

■ Compiled into JavaScript
○ website, github

● Fuzzer
○ jsfuzz: Coverage guided fuzz testing for Javascript

● Complexity: Low
○ Direct fuzzing of Lodestar npm package
○ Lodestar APIs are pretty simple

■ And TypeScript typing help a lot
○ Jsfuzz harnesses are not complicated as well

25

https://github.com/ChainSafe/lodestar
https://lodestar.chainsafe.io/
https://github.com/ChainSafe/lodestar
https://github.com/fuzzitdev/jsfuzz
https://www.npmjs.com/package/@chainsafe/lodestar

© 2022 FuzzingLabs - BeaconFuzz - OffensiveCon 2022

● 7 Bugs found
○ TypeError in SSZ library during BeaconBlock deserialize - link
○ RangeError in SSZ library when parsing empty BeaconBlock - link
○ "TypeError: public key must be a Buffer" when parsing ENR string - link
○ Memory exhaustion/OOM when parsing invalid ENR string - link
○ "AssertionError" inside bcrypto library when parsing invalid ENR string. - link
○ "Assertion `val->IsArrayBufferView()' failed" when parsing invalid ENR string - link
○ "TypeError: Cannot read property 'toString' of undefined" when parsing ENR string - link

● Limitation
○ Lodestar development was late compared to others
○ Code wasnʼt always using the latest specification version

● Possible improvement
○ Add more fuzzing harnesses to improve coverage

eth2fuzz - Lodestar results

26

https://github.com/ChainSafe/ssz/issues/22
https://github.com/ChainSafe/ssz/issues/23
https://github.com/ChainSafe/discv5/issues/59
https://github.com/ChainSafe/discv5/issues/64
https://github.com/ChainSafe/discv5/issues/70
https://github.com/ChainSafe/discv5/issues/71
https://github.com/ChainSafe/discv5/issues/56

© 2022 FuzzingLabs - BeaconFuzz - OffensiveCon 2022

eth2fuzz - Global results

27

● Total: 26 bugs found
○ Dumb fuzzing / Replay of coverage-guided generated inputs (10)
○ Coverage-guided fuzzing (16)

● Pros
○ The most efficient technique (good ratio bugs/time spent)
○ Coverage-guided fuzzing produce reusable & interesting corpora

■ against all targets and by every fuzzing tools
○ All clients have more or less the same naming/function prototype

■ since they follow the same spec

● Cons
○ Need to write a lot of fuzzing harnesses
○ Result and speed are dependent on the fuzzing framework quality/efficiency
○ Cryptographic BLS signature verification need to be disabled on all targets

■ to speed up fuzzing execution and go deeper into the codebase
○ Difficult to detect logic bugs
○ Time-consuming to keep up-to-date all fuzzing harnesses

© 2022 FuzzingLabs - BeaconFuzz - OffensiveCon 2022

eth2diff - Lazy Differential Fuzzing

28

© 2022 FuzzingLabs - BeaconFuzz - OffensiveCon 2022

● Goals: Replay fuzzing corpora across clients
● Complexity: Low

○ Compilation of all projects using dockers
○ Extraction of CLI testing tools

■ lci, pcli, ncli, zcli, etc.
○ Comparison of return code
○ Written in Rust

eth2diff - (Really) Lazy Differential Fuzzing

29

© 2022 FuzzingLabs - BeaconFuzz - OffensiveCon 2022

eth2diff - Results
● 1 Bug found

○ PRYSM: Incorrect validation of pre-state attestation & malformed block signature during state transition - link

● Pros
○ Useful for debugging crashes found using eth2fuzz
○ Easy and Fast to implement
○ Integration of future ETH2.0 tools/library easier

● Cons
○ Really long to compile (> 30 min)

■ 5 projects inside 5 dockers (> 14 Go)
○ Slower than in-process fuzzing
○ Not a fuzzer, just a differential tester

■ Donʼt generate any inputs, just execute provided ones
○ Not all features (parsing, processing operations) are implemented inside testing CLI tools.
○ Not all projects got working CLI testing tools
○ Some types of inputs are considered as trusted by development teams

30

https://github.com/prysmaticlabs/prysm/issues/5658

© 2022 FuzzingLabs - BeaconFuzz - OffensiveCon 2022

beaconfuzz_v2 - Differential fuzzing

31

© 2022 FuzzingLabs - BeaconFuzz - OffensiveCon 2022

● Goals: Find logic bugs with differential fuzzing
○ Reuse existing corpora
○ Generate valid inputs using Structural fuzzing
○ Focus on attacking State processing code
○ Detect outputs difference between all clients

● Complexity: Medium/Hard
○ Fuzzing hardnesses in Rust

■ Structural fuzzing
○ FFI Bindings for each client

■ Custom fuzzing library
■ Rust Bindings

○ A lot of manual writing & compilation
■ Shared libraries

beaconfuzz_v2 - Structural & Differential fuzzing

32

© 2022 FuzzingLabs - BeaconFuzz - OffensiveCon 2022

● Structural fuzzing in Rust
○ Add Arbitrary trait to each lighthouse structure

■ Create a specific lighthouse branch for fuzzing
■ Dedicated Lighthouse compiler flags

● SSZ encoding/decoding
○ Other clients objects representation are not the same
○ Not possible to just copy memory bytes

● State processing
○ Rust FFI Bindings for each client
○ Lighthouse: Direct calls to Rust methods
○ Prysm: Shared fuzzing library (using cgo)
○ Nimbus: Shared fuzzing library
○ Teku: Java Native Interface (JNI) library

● Comparison
○ Rust panics if output SSZ objects are differents

beaconfuzz_v2 - Architecture

33

AttestationGenerated
using structural

fuzzing

SSZ encoding

Post state SSZ encoding
+ comparaison

SSZ decoding
(prysm,

nimbus,teku)

State
processing

https://github.com/rust-fuzz/arbitrary

© 2022 FuzzingLabs - BeaconFuzz - OffensiveCon 2022

beaconfuzz_v2 - Results
● 6 Bugs found (Consensus bugs)

○ PRYSM: Incorrect Validator Exits verification - link
○ PRYSM: No check of Attestation Indexed Validity - link
○ PRYSM: Incorrect epoch when validating ProposerSlashing - link / PR
○ PRYSM: Invalid verification of attesting indices due to off-by-one bug - link / PR
○ PRYSM: Invalid of proposer slashing when signed block header are equals - link / PR
○ TEKU: Equality of proposer slashing signed block header messages not checked - link / PR

● Pros
○ Structural fuzzing only produce valid type
○ SSZ format helps to share data & comparison
○ Good results finding logic/consensus bugs

● Cons
○ Writing fuzzing library for each was really long

■ Difficult to maintain up-to-date
■ Heavy compilation parts/issues

○ Slow fuzzing speed
■ Lot of shared libraries code to execute
■ SSZ decoding/encoding + processing operations

34

https://github.com/prysmaticlabs/prysm/pull/6986
https://github.com/prysmaticlabs/prysm/pull/6983
https://github.com/sigp/beacon-fuzz/issues/91
https://github.com/prysmaticlabs/prysm/pull/7725
https://github.com/sigp/beacon-fuzz/issues/78
https://github.com/prysmaticlabs/prysm/pull/7684
https://github.com/sigp/beacon-fuzz/issues/74
https://github.com/prysmaticlabs/prysm/pull/7252
https://github.com/sigp/beacon-fuzz/issues/90#issuecomment-721624565
https://github.com/ConsenSys/teku/pull/3151

© 2022 FuzzingLabs - BeaconFuzz - OffensiveCon 2022

Conclusion

35

© 2022 FuzzingLabs - BeaconFuzz - OffensiveCon 2022

● Results
○ 33 bugs found (almost all critical)

■ Lighthouse: 3, Prysm: 9, Nimbus: 7
■ Teku: 7, Lodestar: 7

○ All kinds of bugs found
■ 7 consensus bugs, 23 crashes, 3 OOM/Resource exhaustion

● Community fuzzing
○ Beaconfuzz has been released in Open-source with dockerize version
○ 4 bugs found by other people running beaconfuzz

● Main difficulty
○ Complex to keep everything up-to-date

■ Multiple breaking changes
● 70% of the time spent dealing with compilation issues

■ The specification version supported by each client is different
○

Conclusion & Final results

36

© 2022 FuzzingLabs - BeaconFuzz - OffensiveCon 2022

Takeaways & Future
● Takeaways

○ Blockchain software is a really interesting target
○ You don't need to build complex fuzzers to start finding bugs

■ 10 bugs with replay, 16 with coverage-guided & 7 differential
■ Build multiple tools during your research!
■ Improve them to find more bugs

○ Differential fuzzing is extremely powerful to find logic bugs
■ but not discussed publicly a lot.

○ Complete details of this project in the Beaconfuzz series (10 blog posts)

● Future / Next steps
○ Change/Replace some fuzzing framework

■ Especially Jazzer for Teku (already in production)
○ Improve & add new fuzzing harnesses

■ Some parts of the code are fuzzed but not with differential testing
■ Networking P2P stack, Lodestar, etc…

○ Update fuzzing harnesses for next ETH2.0 Phases
■ Snappy encoding added to SSZ
■ ETH2 specification changed a bit

37

https://blog.sigmaprime.io/tag/beacon-chain.html

© 2022 FuzzingLabs - BeaconFuzz - OffensiveCon 2022

Thanks for your time! Any questions?

38

© 2022 FuzzingLabs - BeaconFuzz - OffensiveCon 2022

Image sources
● https://pxhere.com/en/photo/636182
● https://ethereum.org/en/assets/
● https://bitcoinmatin.fr/2020/12/02/ethereum-2-0-beacon-lancee/
● https://blog.ethereum.org/2022/01/24/the-great-eth2-renaming/
● https://journalducoin.com/ethereum/ethereum-2-0-dilemme-diversification-clients/
● https://subscription.packtpub.com/book/data/9781839213199/16/ch16lvl1sec17/architecture
● https://github.com/sigp/beacon-fuzz

39

https://pxhere.com/en/photo/636182
https://ethereum.org/en/assets/
https://bitcoinmatin.fr/2020/12/02/ethereum-2-0-beacon-lancee/
https://blog.ethereum.org/2022/01/24/the-great-eth2-renaming/
https://journalducoin.com/ethereum/ethereum-2-0-dilemme-diversification-clients/
https://subscription.packtpub.com/book/data/9781839213199/16/ch16lvl1sec17/architecture
https://github.com/sigp/beacon-fuzz

